Question Number	Scheme	Marks
(a) (b) (i) (ii)	A statistical process devised to describe or make predictions about the expected behaviour of a real-world problem. The number showing on the uppermost side of a die after it has been rolled. The height of adult males.	$\begin{array}{ll} \text { B1 B1 } \\ \text { B1 } & \\ \text { B1 } & \\ & (2) \\ & (4 \text { marks }) \end{array}$
2.	$\begin{align*} & \mathrm{P}(T>55)=0.05 \\ & \therefore \mathrm{P}\left(Z>\frac{55-\mu}{\sigma}\right)=0.05 \\ & \Rightarrow \frac{55-\mu}{\sigma}=1.6449 \\ & \mathrm{P}(T<10)=0.001 \\ & \therefore \mathrm{P}\left(Z<\frac{10-\mu}{\sigma}\right)=0.001 \\ & \Rightarrow \frac{10-\mu}{\sigma}=-3.0902 \\ & \therefore 55-\mu=1.6449 \sigma \\ & 10-\mu=-3.0902 \sigma \\ & \therefore \mu=39.368 \\ & \sigma=9.5035 \tag{9} \end{align*}$ Standardising Completely correct -3.0902 Standardising Completely correct Attempt to solve $\begin{aligned} & \mu=39.4 \\ & \sigma=9.50 \end{aligned}$	B1 M1 A1 B1 M1 A1 M1 A1 A1 (9 marks)

Question Number	Scheme		Marks
3. $\begin{array}{r}\text { (a) } \\ \\ (b) \\ \\ \\ \\ (c)\end{array}$	$k(1+2+3+4+5)=1$	Use of $\sum \mathrm{P}(X=x)=1$	M1 A1
	$\Rightarrow k=\frac{1}{\underline{15}} \quad *$		A1 (3)
	$\mathrm{E}(X)=\frac{1}{15}\{1+2 \times 2+\ldots+5 \times 5\}$	Use of $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$	M1 A1
	$=15$		A1
	$\therefore \mathrm{E}(2 X+3)=2 \mathrm{E}(X)+3$		M1
	$=\frac{31}{3}$		A1 ft (5)
	$\mathrm{E}\left(X^{2}\right)=\frac{1}{15}\left\{1+2^{2} \times 2+\ldots+5^{2} \times 5\right\}$	Use of $\mathrm{E}\left(X^{2}\right)=\sum x^{2} \mathrm{P}(X=x)$	M1
	$=15$		A1
	$\operatorname{Var}(X)=15-\left(\frac{11}{3}\right)^{2}$	Use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$	M1
	$=\frac{14}{9}$		A1
	$\operatorname{Var}(2 X-4)=4 \operatorname{Var}(X)$	Use of $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$	M1
	$=\frac{56}{9}$		A1 ft (6)
			(14 marks)

Question Number	Scheme		Marks
$\begin{array}{lr}\text { 4. } \\ \text { a) } & \\ \\ \\ & \\ & \text { b }) \\ \text { (c) }\end{array}$	$b=\frac{15 \times 484-143 \times 391}{15 \times 2413-(143)^{2}}$		M1 A1
	$=-3.0899$	AWRT -3.09	A1
	$a=\frac{391}{15}-(-3.0899)\left(\frac{143}{15}\right)$		M1 A1
	$=55.5237$	AWRT 55.5	A1
	$\therefore y=55.52-3.09 x$		B1 ft
	$\therefore h-100=55.52-3.09(s-20)$		M1 A1 ft
	$\therefore h=217.32-3.09 \mathrm{~s}$	AWRT 217; 3.09	A1 (10)
	For every extra revolution/minute the life of the drill is reduced by 3 hours.		B1 B1 (2)
	$s=30 \Rightarrow h=124.6$	AWRT 125	M1 A1 ft (2)
			(14 marks)

Question Number	Scheme	Marks
5. (d)	A: $\mathrm{Q}_{3}-\mathrm{Q}_{2}=10 ; \mathrm{Q}_{2}-\mathrm{Q}_{1}=10 \Rightarrow$ symmetrical both distributions $\mathrm{B}: \mathrm{Q}_{3}-\mathrm{Q}_{2}=7 ; \mathrm{Q}_{2}-\mathrm{Q}_{1}=7 \Rightarrow$ symmetrical \int are symmetrical Median B (24) > Median A (22) \Rightarrow on average teachers in B travel slightly further to school than those in A Range of B is greater than that of A 25% of teachers in A travel 12 km or less compared with 25% of teachers in B who travel 17 km or less 50% of teachers in A travel between 12 km and 32 km as compared with 17 km and 31 km for B Any 4 sensible comments	B1 B1 B1 B1 (16 marks)

Question Number	Scheme	Marks
6.	$\mathrm{P}(\mathrm{H} \cap \mathrm{W})=\mathrm{P}(\mathrm{H} \mid \mathrm{W}) \mathrm{P}(\mathrm{W})$	M1
(a)	$=\frac{11}{12} \times \frac{1}{2}=\frac{11}{\underline{24}} *$	A1 (2)
(b)		
	Diagram	M1
	$\left(\begin{array}{ll} 17 & 11 \\ \hline \end{array}\right) \quad \mathrm{H} \cap \mathrm{~W}^{\prime}$	M1 A1
	$\left(\begin{array}{lll}120 & 24 & 24\end{array}\right) 43 \begin{array}{ll}11\end{array}$	A1
	$\bigcirc \quad \mathrm{H} \cap \mathrm{W}$	B1 (5)
(c)	$P($ only one has a degree $)=\frac{17}{120}+\frac{1}{24}=\frac{11}{60}$	M1 A1 (2)
(d)	$P(\text { neither has a degree }) \quad=1-\left\{\frac{17}{120}+\frac{11}{24}+\frac{1}{24}\right\}$	M1 A1
	$=\frac{43}{120}$	A1 (3)
(e)	Possibilities Any one $-\left(\mathrm{HW}^{\prime}\right)\left(\mathrm{H}^{\prime} \mathrm{W}\right) ;\left(\mathrm{H}^{\prime} \mathrm{W}\right)\left(\mathrm{HW}^{\prime}\right) ;(\mathrm{HW})\left(\mathrm{H}^{\prime} \mathrm{W}^{\prime}\right) ;\left(\mathrm{H}^{\prime} \mathrm{W}^{\prime}\right)(\mathrm{HW})$	B1
	All correct	B1
	$\therefore \mathrm{P}($ only 1 H or 1 W$)=\left(2 \times \frac{17}{120} \times \frac{1}{24}\right)+\left(2 \times \frac{11}{24} \times \frac{43}{120}\right) \quad 2 \times \frac{17}{120} \times \frac{1}{24}$	B1 ft
	$=\frac{49}{\underline{144}} \quad 2 \times \frac{11}{24} \times \frac{43}{120}$	B1 ft
	Adding their probabilities	M1
	$\frac{49}{144}$	A1 (6)
		(18 marks)

